Proteasomal Degradation of Proinsulin Requires Derlin-2, HRD1 and p97

نویسندگان

  • Hanneke Hoelen
  • Arnaud Zaldumbide
  • Wouter F. van Leeuwen
  • Ellen C. W. Torfs
  • Marten A. Engelse
  • Chopie Hassan
  • Robert Jan Lebbink
  • Eelco J. de Koning
  • Maaike E. Resssing
  • Arnoud H. de Ru
  • Peter A. van Veelen
  • Rob C. Hoeben
  • Bart O. Roep
  • Emmanuel J. H. J. Wiertz
  • Edda Fiebiger
چکیده

Patients with type 1 diabetes (T1D) suffer from beta-cell destruction by CD8+ T-cells that have preproinsulin as an important target autoantigen. It is of great importance to understand the molecular mechanism underlying the processing of preproinsulin into these CD8+ T-cell epitopes. We therefore studied a pathway that may contribute to the production of these antigenic peptides: degradation of proinsulin via ER associated protein degradation (ERAD). Analysis of the MHC class I peptide ligandome confirmed the presentation of the most relevant MHC class I-restricted diabetogenic epitopes in our cells: the signal peptide-derived sequence A15-A25 and the insulin B-chain epitopes H29-A38 and H34-V42. We demonstrate that specific silencing of Derlin-2, p97 and HRD1 by shRNAs increases steady state levels of proinsulin. This indicates that these ERAD constituents are critically involved in proinsulin degradation and may therefore also play a role in subsequent antigen generation. These ERAD proteins therefore represent interesting targets for novel therapies aiming at the reduction and possibly also prevention of beta-cell directed auto-immune reactions in T1D.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PDI reductase acts on Akita mutant proinsulin to initiate retrotranslocation along the Hrd1/Sel1L-p97 axis

In mutant INS gene-induced diabetes of youth (MIDY), characterized by insulin deficiency, MIDY proinsulin mutants misfold and fail to exit the endoplasmic reticulum (ER). Moreover, these mutants bind and block ER exit of wild-type (WT) proinsulin, inhibiting insulin production. The ultimate fate of ER-entrapped MIDY mutants is unclear, but previous studies implicated ER-associated degradation (...

متن کامل

Mechanisms targeting apolipoprotein B100 to proteasomal degradation: evidence that degradation is initiated by BiP binding at the N terminus and the formation of a p97 complex at the C terminus.

OBJECTIVE In lipid-poor states, the ubiquitin-proteasomal pathway rapidly degrades misfolded apolipoprotein B100 (apoB) cotranslationally, although the mechanism of delivery from the ER to cytosolic proteasomes is poorly understood. Here we demonstrate key roles of BiP, an ER luminal chaperone, and p97, a cytosolic ATPase anchored to the ER membrane, in the targeting of apoB for proteasomal deg...

متن کامل

A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation

During endoplasmic reticulum-associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the H...

متن کامل

Mouse Mammary Tumor Virus Signal Peptide Uses a Novel p97-Dependent and Derlin-Independent Retrotranslocation Mechanism To Escape Proteasomal Degradation

Multiple pathogens, including viruses and bacteria, manipulate endoplasmic reticulum-associated degradation (ERAD) to avoid the host immune response and promote their replication. The betaretrovirus mouse mammary tumor virus (MMTV) encodes Rem, which is a precursor protein that is cleaved into a 98-amino-acid signal peptide (SP) and a C-terminal protein (Rem-CT). SP uses retrotranslocation for ...

متن کامل

A Role for the Ubiquitin Domain Protein HERP in ER-associated Protein Degradation

3 ABSTRACT ER-associated protein degradation (ERAD) is part of the ER quality control system dealing with the accumulation of misfolded proteins in the ER. This process requires polyubiquitylation of ERAD substrates involving E3 ligases, such as HRD1, and their subsequent extraction from the ER membrane by the p97-Ufd1-Npl4 complex. Retrotranslocation of substrates into the cytosol for degradat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015